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We study numerically some discrete growth models belonging to the class of the nonlinear molecular beam
epitaxy equation, or the Villain—Lai—-Das SarnddLDS) equation. The conserved restricted solid-on-solid
model(CRSOS with maximum height differencedH,,,=1 andAH,,,,=2 was analyzed in substrate dimen-
sionsd=1 andd=2. The Das Sarma and TamboreriBd) model and a competitive model involving random
deposition and CRSOS deposition were studiedri. For the CRSOS model withH,,,=1, we obtain the
more accurate estimates of scaling exponentd=ii: roughness exponenat=0.94+0.02 and dynamical ex-
ponentz=2.88+0.04. These estimates are significantly below the values of one-loop renormalization for the
VLDS theory, which confirms Janssen’s proposal of the existence of higher-order corrections. The roughness
exponent ind=2 is very near the one-loop resultzg, in agreement with previous works. The momentsof
ordersn=2, 3, 4 of the height distribution were calculated for all models, and the ske@aae\t@/\/\é’z and
the kurtosisQEW4/W§—3 were estimated. At the steady states, the CRSOS models and the competitive model
have nearly the same values®andQ in d=1, which suggests that these amplitude ratios are universal in the
VLDS class. The estimates for the DT model are different, possibly due to their typically long crossover to
asymptotic values. Results for the CRSOS modeld=2 also suggest that those quantities are universal.
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I. INTRODUCTION E= [((h—F)2>]1/2. 2)

Surface and interface growth processes are subjects @iy, short times. it scales as
great interest from the perspective of applications to thin 5
films and multilayer growth, and, from the theoretical point &~ 17, 3

of view, for their important role in nonequilibrium statistical whereg is called the growth exponent. For long times, in the
mechanics[1,2]. Frequently, those processes are descnbegteady state, the interface width saturates at
by discrete models which represent the basic growth mecha-

nisms by simple stochastic rules, such as aggregation and sar~ LY, (4)
diffusion, and neglect details of the microscopic interactions,,nere o is called the roughness exponent. The crossover

On the other hand, continuous theories are successful at reae from the growth regime to the steady state scales with
resenting those processes in the hydrodynamic limit. They i the dynamical exponent

predict the scaling exponents of many discrete models,
which are consequently grouped in a small number of uni- z=alp. 5

versality classes. , o For the VLDS theory, a one-loop dynamical
Growth by molecular beam epitaxIBE), which is one oo rmajization-grougDRG) calculation[3,4] led to a=(4

of the most important techniques to produce high-quality_ - — (A
films with smooth surfaces, motivated the proposal of many d/3, 22(8+d)/3, and f=(4-d)/(8+d) below the upper

discrete and continuous models. The dynamics during MBgnncal dimensiond,=4. See also the recent work of Katzav

deposition is dominated by diffusion processes, which led t 6], based on a self-consistent expansion approach, which
the proposal of the Villain-Lai-Das SarméLDS) growth also obtains these estimates. Some authors assumed the one-

equation[3.4] Ioo_p values to pe exact ir] all orders, .but Jans[§Qme.centI3_/
' claimed that this conclusion was derived from an ill-defined
transformation and, consequently, there would be higher-
o =1, V*h + \,VA(Vh)? + p(X,t), (1)  order corrections. From a two-loop calculation, he obtained
at small negative corrections t@ andz in all dimensiong7].
Numerical studies of some discrete models which belong to
where h(x,t) is the height at position< and timet in a  the VLDS class in the continuum lim{arge lattices, long
d-dimensional substrate, and\, are constants, anglis a  time9 were not able to solve this controversy.dr 1, nu-
Gaussian(nonconservativenoise. Equation(1) is also fre- merical work on a conserved restricted solid-on-solid model
quently called a nonlinear molecular beam epitaxy equationto be defined beloysystematically suggests<1 [8,9], but
or a conserved Kardar-Parisi-Zhang equalfibyb]. the error bars are large and, consequently, the authors still
The most important geometrical quantity to characterizesuggest the validity of the one-loop result.da2 and higher
the surface of the deposit grown by such processes is thgimensions[10], numerical results indicated that possible
interface width. It is defined as the root-mean-square fluctuaecorrections to the one-loop result were smaller than the two-
tion of the average height, loop estimates of Janssén).
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Another important question is motivated by recent resultdions of effective(roughness and dynamigaéxponents for
on discrete models belonging to the Kardar-Parisi-Zhanghe CRSOS model =1 andd=2. The asymptotic expo-
(KPZ) class ind=2. The KPZ growth equation includes nents ind=1 are clearly different from the one-loop DRG
second-order linear and nonlinear terms which are more relkalues and the sign of the deviations are in qualitative agree-
evant than those in the VLDS equatifBqg. (1)] in the hy-  ment with Janssen’s resulig]. In d=2, possible corrections
drodynamic limit [5,1]. Works on discrete KPZ models in the exponentr are smaller than the two-loop corrections
showed that the steady-state values of the moments of thmalculated in that work, confirming other authors’ conclu-
height distribution, sions. It will also be shown that the moments of the heights
— distribution obey power-countinfeqg. (7)] in d=1 andd=2,
W, =((h-h)", (6)  similarly to KPZ, and that the skewness and the kurtosis for
different versions of the CRSOS modg@lifferent AH,,,)
and for the competitive model have nearly the same values.
W, ~ L (7)  These estimates differ from those of the DT modetini1,
but universality of amplitude ratios in the VLDS class cannot
be discarded due to the typical long crossovers of the DT

obey power-counting, i.e., they scale as

(note thatW,=£%). Moreover, estimates of the skewness

W; model.
S= @/2 (8) The rest of this paper is organized as follows. In Sec. Il,
we present the stochastic rules of the CRSOS and DT models
and of the kurtosis and give information on the simulation procedure. In Sec.
W Ill, we calculate the scaling exponents of the VLDS class in
Q=-—2-3 (9)  one-dimensional substrates. In Sec. IV, we calculate the scal-
VV% ing exponents in two-dimensional substrates. In Sec. V, we
of the KPZ models indicated that the amplitude ratios of thef0mpare the asymptotic amplitude ratios of all modelsl in
momentsW, (such asS and Q) are universa[11-13. It =1 andd=2. In Sec. VI, we summarize our results and

seems that no previous work has considered these questioR&Sent our conclusions.
in models belonging to the VLDS class, possibly due to the
large times involved in their simulatior(the dynamical ex- Il. MODELS AND SIMULATION PROCEDURE
ponent is nearly double that of the KPZ clasBesides the
theoretical relevance of those questions, additional motiva- The rules for choosing the aggregation point in our ver-
tion for their analysis is the fact that the amplitude ratios carsion of the CRSOS model are slightly different from the
be measured with much higher accuracy than the scalingriginal ones. The present version was introduced in Ref.
exponents and may eventually help one to infer the univerf22] as a model for amorphous carbon-nitrogen film growth,
sality class of an experimental growth process. but only small lattices were analyzed there and, conse-
There are a small number of discrete models belonging tguently, reliable estimates of scaling exponents were not ob-
the VLDS class in the continuum limit. The discrete modeltained.
proposed by Das Sarma and Tamborefigh mode) [14] is At any time, all pairs of neighboring columns are re-
an example of a MBE-motivated model which falls in that stricted to obey the conditioAh<AH,,,,, whereAh is the
class ind=1, although there is evidence that its clasgdin difference in the columns’ heights amH,,, is fixed. The
=2 is different[15,16. On the other hand, the so-called con- deposition attempt begins with the random choice of one
served restricted-solid-on-solidCRSOS models, first pro- substrate column. If the above condition is satisfied after
posed by Kimet al. [8], is expected to belong to the VLDS aggregation of a new particle at the top of columthen the
class in all dimensions. This was already proved analyticallyaggregation takes place at that position. Otherwise, a nearest-
in d=1[17-19. In the CRSOS models, the difference in the neighbor column is randomly chosémdependently of its
heights of neighboring columns is always smaller than a cerheigh) and the same test is performed. This process is con-
tain valueAH,,,, similar to the RSOS model of Kim and tinued until a column is chosen in which the new particle can
Kosterlitz[20,2]. However, in the Kim-Kosterlitz model, if be permanently deposited. Here, the cadé$, =1 and
the aggregation at the column of incidence does not satisfiAHa=2 will be analyzed.
that condition, then the aggregation attempt is reje¢ted- In the original version of the CRSOS modé], the ag-
sequently, the model is in the KPZ clas®n the other hand, gregation takes place at the nearest column in which the
in the CRSOS model, the incident particle migrates to thecondition on height differences is satisfied, but in our version
nearest column at which the height difference constraint ishe incident particle performs a random walk along the sub-
satisfied after aggregation. Thus, all deposition attempts argtrate directio(s) while it searches for the aggregation point.
successful in the CRSOS model. The original model was proved to belong to the VLDS class
Here, we will study numerically a modified version of the in d=1 by different method§17-19 and the coefficients of
CRSOS model im=1 andd=2, with two different values of the VLDS equation were explicitly calculated faH,,=1
AHpa the DT model ind=1, simulated with noise- [18,19. Since our version does not change any symmetry of
reduction methods, and a competitive model involving CR-the original CRSOS model, it is also expected to be in that
SOS and random depositiondi+ 1. All these models belong class. Notice, for instance, that there is no upward or down-
to the VLDS class. We will perform systematic extrapola-ward current in our model due to the mechanism of random
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walks for choosing the aggregation positigthe random 1 3 L L B
steps do not depend on the relative heights of the columns __095F 4 _osesE =
It implies that the coefficient of the second-order height de- R 0.0 i E 0.0 o 3
rivative of the growth equatiorfinot shown in Eq.(1)] is s o 1 5 Tk o E
exactly zero, the VLDS equation being the most plausible 0.85 | 3 0.85 o
continuum description—see, e.g., the discussion in R&]. Y] T B 08 b1
We will also study the DT model il=1. In this model, 0 0.01 0 0.01

the incident particle sticks at the top of the randomly chosen 1/L 1/L
columni if it has one or two lateral neighbors at that position

(a kink site or a valley, respectivelyOtherwise, the neigh- (a) (b)

boring columns(at the right and the left sides id=1) are
consulted. If the top position of only one of these columns is  FIG. 1. Effective roughness exponerit Lo and (b) a4
a kink site or a valley, then the incident particle aggregates afersus inverse lattice length for th@ +1)-dimensional CRSOS
that pOint. If no neighboring column satisfies that Condition,mode| with AH,.,=1. Error bars are shown only when they are
then the particle sticks at the top of columrFinally, if both  jarger than the size of the data points.
neighboring columns satisfy that condition, then one of them
is randomly chosen.

In our simulations of the DT model, we used the noise
reduction technique adopted in R¢24]. The noise reduc-

lines described in Ref.13]. In order to estimate dynamical
exponents, we used a recently proposed method to calculate

tion factorm is the number of attempts at a site for an actual® haracteristic time, which is proportional to the time of
aggregation process to occi{5,2§. Here, the valuem relaxation to the steady stafd0]. For fixedL, after calcu-

=10 will be considered because it provided accurate estil@ting the saturation widtl§s.(L), 7 is defined through
mates of scaling exponents in RE24] from simulations in _
relatively small systems. On the other hand, the data for the 6L, 70) = késal L), (10
original DT model present huge finite-size correctigsse,  with a constank=<1. From the Family-Vicsek relatiof81],
e.g., Ref.[27]). it is expected thaf30]
In order to improve our discussion on the universality of
amplitude ratiogSec. Vj, we also simulated a competitive 7o~ L% (11
model in which the aggregation of the incident particle may
follow two different rules: with probabilityp, the particle
aggregates at the top of the column of incidence, such as in™; .
the random depositio(RD) model[1]; otherwise(probabil- 70 Increase very fas_t with. Cor}sequently, for largk, the
ity 1-p) it diffuses until finding a columr in which the  accuracy ofrol|s low in large Iattlcc_as. On the other hand, for
conditionh;—h; < AH,,, is satisfied for all nearest neighbors small k, the times, in small lattices are also very small
j after aggregation. Thus, the latter aggregation mechanisif€@70=1) and, consequently, there are effects of the initial
works for preserving the column heights’ constraint of theflat substrate. This is the reason why we chose a restricted
CRSOS model. Extending previous conclusions on othefange ofk to analyze our data.
competitive model$28,29, it is expected that this model is
described asymptotically by the VLDS equation, similarly to  |j]. SCALING EXPONENTS IN ONE-DIMENSIONAL
the pure CRSOS model, but the coefficientsand\, of the SUBSTRATES
corresponding continuous equatiffeq. (1)] are expected to
depend orp. In this paper, we will simulate the model with In order to estimate the roughness exponent from the in-
p=0.25(p=0 is the pure CRSOS model terface width¢, the first step is to calculate the effective
The above models were simulateddr1 in lattices of ~ €xponents
lengths ranging fromL=16 to L=1024 for the CRSOS :
model with AH,,,=1 and AH,,=2, from L=16 to L ) = In[§sa{L)/§53(L/|)] (12)
=256 for the DT model, and frorh=16 to L=512 for the ’ Ini
competitive model. For the CRSOS models, the number of, fixed . It is expected thaty, ;— « for any choice of.
realizations up to the steady state was typicall§ fd the '

. . In Figs. d 1b), h d
smallest lattices and nearly 500 for the largest lattices. Th /Ln relsgsecfazalanforxth)e Z:VSSS ngrsélazlanwﬁ (L"‘)_\l/e?#j
same applies to the DT model, but notice that the largest pectively, Wi max= -

length in that case was just=256. Ind=2, the CRSOS evolution of the datg suggests thag ;) converges to 0.91
model with AH,,=1 was simulated in lattices of lengths < a=<0.94, accounting for the error bars and reasonable

ranging fromL=16 to L=256, and withAH,,,=2 only un-  finite-size corrections. o .
til L=128. Whenever the number of realizations up to the '€ type of plotin Figs. (8 and ¥b) is suitable to fit the

steady state was smaller than*18 larger number of real- data to the scaling form

Here, we estimated, with k ranging fromk=0.4 to k
ﬁO.?. Since the exponeuntis large, the characteristic times

izations coveri_ng the growth and the_crossover regions_ was L~ a+ AL (13)
generated. This allowed the calculation of crossover times ’
(see below with good accuracy in=1. with A constant, if the correct variable.™ is used

The calculation of the moments of the height distributionin the abscissg§A=1 was tested in Figs.(8 and Ib)].
at the steady state¥y, [Eq. (6)], followed along the same In its turn, Eqg.(13) is a consequence of a scaling relation
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S o9fF . 9 S oof »., 0.9 | = oo P E 3
s a s 3 8 ] ; ]
0.85-“”|““|”“- 0.85-""|""- 0.85-""|""- 0.85"""""-
0 0.05 0.1 015 0 005 0.1 0 0.01 0.02 0 001 0.02
1/L1/? 1/L1/2 1/L 1/L
(a) (b) (a) (b)
FIG. 2. Effective roughness exponer& o, and(b) a4 FIG. 3. Effective roughness exponem%) (accounting for the

versus 1LY2 for the (1+1)-dimensional CRSOS model with intrinsic width) versus 1L for (1+1)-dimensional CRSOS models
AHa=2. Error bars are shown only when they are larger than thévith (&) AHpa=1 and(b) AHpa,=2.
size of the data points.

would lead to nearly the same extrapolated valuer.oThe
Eqar=L%ag+a,L™), with a; and a,; constants, which in- data for AHq,,=1 are more accurate and suggest 630
cludes a subdominant term in addition to the dominant one ir 0.95, which is consistent with the previous analysis. The
Eq. (4). However, no variable of the forrh™ provided a  results forAH,,=2 confirm the trend tar<<1, although the
reasonable linear fit in the range of lattice size analyzedincertainties are larger.
there. Thus,A=1 was used in Figs.(& and 1b) just to Assuming the power-counting properfq. (7)] of the
illustrate thel. dependence of the effective exponents. On thenoments of the width distributiotto be discussed in detail
other hand, estimating the asymptotids possible because in Sec. V), we may also use higher moments to estimate

there is no evidence of an upward curvature of those plots fofhe effective exponents obtained froi have large fluc-
largelL. tuations, but those obtained frovi, behave similarly to the

The data for the CRSOS model wittH,,,,=2 were ana- 0nes obtained from the interface width. They are defined as
lyzed along the same lines. In FiggaRand 2b), we show .
a( ) and a4 versus 1LY2 respectively. The variable in aff), = m[W‘Lsa(L)/W%a{L/')], (16)
the abscissa of Figs(& and 2b) was chosen to provide a ’ Ini

good linear fit of the 4 data—see the dotted line in Fig. where W, (L) are the fourth moments calculated at the
2(b). These results suggest stronger finite-size corrections f%rteady states.

L) Wz_en compar;acl_to thte_ m(t)del W'tk_'_'mtf;]le' Thesgg-z In Figs. 4a) and 4b), we ShOWaEi?z) versus 1LY2for the
responding asympltoic esumates are In the range CRSOS models withAH, ., =1 andAH ., =2, respectively.

0.97, also accounting for the error bars. However, smcel_he variable in the abscissa of Figgayand 4b) was also

these error bars are larger than thoseA®t,,,,=1, it is pos- ) .
; ; . o hosen to illustrate the behavior of the data for lakgand
sible that the true asymptotic regime was not attained yet an(dOt to fit the data to a certain scaling form. The downward

that the true leading corrections are different. Anyway, thos curvature of the plots for largk also suggestar<1. The

results still suggest that<1 in thel —c limit. maximum and minimum reasonable limits that can be in-
Alternatively, we will analyze our data assuming the pres-

ence of a constant term as the subleading correction to t fgrred from the evolution of the data fokaale g|_ve
scaling of & t .92< a=<0.96. The accuracy of the estimate foH =2
sal

is lower, as before.
§§at: g,z + AL (14) The intersection of at least two of the above estimates for
AH,.=1, obtained from the scaling of different quantities

[since a~1, it corresponds asymptotically th~2 in Eq.

(13)]. § is called intrinsic width and is frequently associated I M
to large local slopes in discrete KPZ modgr$,26,13. Ef- - s ] . [ ]
fective exponentsnﬁ') which cancel the contribution o‘flz ’:'rﬁ, 0.85 5 E 33 0.95 II E
may be defined as S oFE e 1% WEY e 3
; " ] “F s ]
(I)_Eln[ggaKZL)_gga{L)]/[gga(L)_gga“-/z)] 0.85 TR 0.85 ]

o= 2 In2 . (19 70 005 01 0.5 70 005 0.1 0.15

1/Ll/2 1/Ll/2
In Figs. 3a and 3b), we ShOWa(LI) versus 1L for the

CRSOS model withAH,,.,=1 and AH,,.,=2, respectively. (a) (b)
Here, the variable 1/ in the abscissa was also not chosen to
perform data extrapolation. The effective exponents vary FIG. 4. Effective roughness exponemﬁ?z) (obtained from the
within narrow range$0.89-0.94 forAH,;,,=1, 0.90-0.96 for  fourth momentw,) versus 1LY2 for (1+1)-dimensional CRSOS
AHna=2), even including their error bars. Consequently, models with(a) AHma=1 and(b) AHnma=2. Error bars are shown
any variable in the formL™ (0.5<A<2) in the abscissa only when they are larger than the size of the data points.
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8 11fF lg 4 8 g Ll 3 ) - ®
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1/L1/2 1/L1/2 - 1

/ / 2.8 | T IIIIII

o

( a ) ( b ) 01.0/1L 0.02

FIG. 5. Effective roughnﬁss exponeiiss «( ) (obtained from FIG. 6. Effective dynamical exponentg 4 versus 1L for the
the interface widthand(b) aEL),Z) (obtained fromW,) versus 11?2 (1+1)-dimensional CRSOS model Withmale: k=0.4 (tri-
for the (1+1)-dimensional DT model. Error bars are shown only angles, k=0.5(squarey k=0.6(crosses k=0.7 (starg. Small hori-
when they are larger than the size of the data points. zontal shifts of the data points were used to avoid their superposi-
tion. Error bargnot shown are smaller thathz=0.02(of this order
and assuming different forms of finite-size corrections, pro<or the largest).
vides a final estimatex=0.94+0.02. As will be discussed

below, results for the DT model do not improve those ob-jong times. These structures largely increase the interface
tained with the CRSOS model. width of some realization&see Ref[32]) and, consequently,

In Figs. %a) and %b), we show the effective exponents have a remarkable influence on the fluctuations of that quan-
o and afL),z) for the noise-reduced DT model, also as atity when averaged over various realizations. However, note
function of 1.2, They are larger thar=1 and systemati- that this instability is controlled in the DT model, i.e., the
cally increase with_. However, from all previous theoretical depths of the grooves do not diverge as time increases, con-
work and the above numerical data for the CRSOS modeldrary to other discretized growth models which show true
there is no reason to expeet>1 in the VLDS class. Con- instabilities when pillars or grooves are formg2,33.
sequently, extrapolation of those data will not give reliable Now we turn to the calculation of the dynamical expo-
information for the discussion on the exponents of the VLDShent.
theory in 1+1 dimensions. Instead, it is expected that the Effective dynamical exponents are defined as
effective exponents for the noise-reduced DT madegs. In[ 7o(L)/ 7o(L/i)]
5(a) and %b)] will eventually begin to decrease with pos- 2= =T
sibly for much largeiL. Such a decrease of,_» is actually Ini

observed in the original DT modélithout noise reduction 5o thatz. —z ast—. The error bars of, are larger than

in the same range of lattice lengths analyzed fi2i§ Also  those of¢ and the uncertainties are enlarged in the calcula-
recall that, as shown in R€27], the data for the original DT tion of effective exponents for small values iofEq. (17)],
model also present huge finite-size effects and cannot bgerefore we will work only withi=4.

used to obtain reliable estimates of VLDS exponents. In Fig. 6, we shovg, 4 versus 1L for the CRSOS model

No improvement of the results in Figs(& and 3b) is yjith AH_._ =1, with , calculated using four different values
obtained by considering the contribution of the intrinsic ¢ | in Eq. (10) (0.4<k<0.7). The data for differentk

width [Egs. (14) and(15)]. clearly converge to the same region, providing an asymptotic

There are two other points concerning our r_esults fo_r the'estimatez=2.8810.04. This final estimate also accounts for
DT model that deserve some comments. The first one is thﬁ'1e error bars(not shown in Fig. § which are nearAz

comparison with the results of Punyindu and Das Sarma inLj 95 for the largest values df. Again it is clear that the
Ref. [24], who obtainedx=~ 1 with noise reduction in lattice

lengthsL < 60. Our effective exponents for the smallest lat- - 1iq conciusion is corroborated by the results for the CR-

tif:es(16$ L<64) cor.respond to two data points at the left g 1odel with\H, . =2, although the accuracy of the data
sides(larger 1L) of Figs. §a) and §b) and those exponents - poorer. In Fig. 7, we showy , versus 1L for that

are also near=1. Consequently, our estimates are consis- : : :
tent with those of Ref{24]. On the other hand, we conclude kmi%dgc} Vzlltg)To also calculated using four different values of

that Fhe noise-redu_ction schemg wor.ks properly only in a Our results for the noise-reduced DT model do not pro-
special range of lattice lenghs, since its application to Iarge{/ide useful information on dynamical exponents, similar to

lattices [L. =128 andL=256 in Figs. $a) and §b)] led to oo o ase of the roughness exponents.
effective exponents larger than 1, indicating much more

complicated finite-size behavior.

The other important point is related to the large error bars, |v. SCALING EXPONENTS IN TWO-DIMENSIONAL
particularly for L=256. One of the reasons is certainly the SUBSTRATES
relatively small number of realizations for the largest lengths )
(see Sec. )| However, the surfaces generated by the DT In Figs. 8a) and gb), we show g 5 [Eq. (12)] and
model ind=1 present grooves which may survive during “Ei?z) [Eg. (16)] for the two-dimensional CRSOS model

: 17

value z=3 of one-loop renormalization is excluded.
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FIG. 7. Effective dynamical exponentg 4 versus 1L for “ _o2 _q 1 = _o2E 11. 3
the (1+1)-dimensional CRSOS model withH,,,=2. Error bars :1 }{ :l ; 3 5
(not shown are smaller thahz=0.03(of this order for the largest o 08 i_ o %3 I_,
L). Symbols correspond to the same valuek @f Fig. 6. —0.4(;' o Iolll o '0'2 —0.40" e '0'2

0.1
(C) 1/11/2 (d) 1/L1/2

with AH,.,=1. Both linear fits givex=0.662, which is very
near the one-loop renormalization valuecg of the VLDS
theory. Accounting for the error bars, which are particularly
large for L=256, we are not able to determine whether
=2 is exact or not. On the other hand, confirming other au
thors’ result§10], any difference from that value is probably
smaller than the two-loop correction of Jans§élp which is
Aa=0.014.

Similar to the one-dimensional case, the error bars of th&V,. Clearer evidence is given here by the finite asymptotic
data for the model witlAH,,,,=2 are larger. Consequently, estimates of the skewness and the kurtosis at the steady
no discrepancy from the one-loop exponents could be destates.
tected too. First we consider the models in 1+1 dimensions.

The characteristic timesg, for the model withAH,,,=1 In Figs. 9a) and 9b), we show the steady-state skewness
were obtained in lattices with ¥6L <128, but their values versus 1LY? for the CRSOS models wittAH,,,,=1 and
for the smallest latticegsL =16 andL=32) are very small, AH,=2, respectively. Except for the data far=1024,
sometimes belowr,=1 (one monolayer For L=256, the which have relatively large error bars, all points fall in al-
accuracy of the interface widths data is not enough to promost perfect straight lines, which give the asymptotic value
vide reliable estimates af,. Consequently, we were not able S=0.32+0.02 for both models.
to calculate accurate dynamical exponents in the two- In Figs. 9c) and 9d), we show the steady-state kurtosis

FIG. 9. Steady-state skewness for tfie+ 1)-dimensional CR-
SOS model with(@ AHpa=1 and(b) AHa=2, and steady-state
kurtosis for that model withic) AH =1 and(d) AH,,,=2, as
Tunctions of 1LY2 Dotted lines are least-squares fits of the data.
Error bars are shown only when they are larger than the size of the
data points.

dimensional case. versus 1LY? for the CRSOS models wittAH,,,,=1 and
AH, =2, respectively. Only the data fot<512 were
V. UNIVERSALITY OF AMPLITUDE RATIOS shown because the error bars are much larget 1024,

not giving additional information on the evolution @f Rea-

Evidence on the power-counting property of the momentsonable linear fits are obtained with the last four data points
W, of the heights distribution of VLDS models was given in each case. The asymptotic estimat€is—0.11+0.02 for
in Sec. lll by the estimates o& obtained fromW, and  poth models.

Our results for the competitive mod@éRD and CRSOg
introduced in Sec. Il also suggest that those amplitude ratios
are universal for VLDS models. In that case, there is no
constraint on the difference of the heights of neighboring
columns, but only a trend to suppress large height differ-
- - ences. The coefficients, and \, in the corresponding con-

Py 3| PR B 05 v L4 tinuous equatiofEg. (1)] are probably different from those
0 0.02 0 0.02 in the pure mode(p=0), as obtained in related competitive
1/L 1/L models[28,29. In Figs. 1@a) and 1@b), we show, respec-
tively, S(L,t— ) andQ(L,t— o) as a function of 1LY for
(a) (b) the competitive model. The asymptotic estimates &re
=0.32+0.02 and)=-0.1, which are near the previous esti-

FIG. 8. Effective roughness exponelis « » (obtained from  mates for the pure CRSOS model.
the interface width and (b) afi)’z) (obtained fromW,) versus 1L In Figs. 1@c) and 1@d), we show, respectively,
for the (2+1)-dimensional CRSOS model WithH,=1. Error ~ S(L,t—) and Q(L,t—=) as a function of 1L for the
bars are shown only when they are larger than the size of the dataoise-reduced DT model id=1. There are several reasons
points. for the large error bars of the kurtosis, particularly in the
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FIG. 11. Steady-state skewness for {Be-1)-dimensional CR-
FIG. 10. (a),(b) Steady-state skewness and kurtosis, respecSOS model with(@ AH =1 and(b) AH,,,=2, and steady-state
tively, as a function of 11/Y'2, for the competitive modelCRSOS  kurtosis for that model withc) AHa=1 and (d) AHpa=2, as
with AHa=1 and RD; (c),(d) steady-state skewness and kurtosis, functions of 1112 Dotted lines are least-squares fits of the data.
respectively, as a function of L¥2, for the DT model. Dotted lines  Error bars are shown only when they are larger than the size of the
are least-squares fits of the data. Error bars are shown only whetata points.
they are larger than the size of the data points.

CRSOS models, which suggests this possibility for the whole

largest lattices. First, as justified in Sec. IlI, fluctuationsVLDS class.
in the data for the DT model are typically large. Secondly,
the relative fluctuations of the momentd/, [Eqg. (6)]
rapidly increase with the ordar. Finally, while the size of
the error bar of the kurtosis is the same as thaN@:f\Ng, the We studied numerically discrete growth models which be-
relative error significantly increases when the constant 3 iong to the VLDS class in 1+1 and 2+1 dimensions. Scaling
subtracted Eq. (9)]. The relatively large errors in Figs(® exponents and steady-state values of the skewness and the
and 9d) (CRSOS modejscan also be explained along these kurtosis, which characterize the height distribution, were de-
lines. termined for those models.

The trends of the data for the DT model in Figs(d&nd Results for the CRSOS model withH,,=1 gave
10(d) are completely different from those of the CRSOSthe roughness exponent=0.94+0.02 and the dynamical
models. We cannot exclude the possibility that the universalexponentz=2.88+0.04 ind=1. These estimates confirm the
ity of the amplitude ratios might be a special feature of CR-proposal of Janssefi7] that the exponents of the VLDS
SOS models and some simple extensions, such as the aboweory obtained from one-loop renormalization=1 and
competitive model. However, the behavior of the scaling exz=3) are not exact. The corrections from two-loop cal-
ponents of the DT model is also unusual, with no possibleculations givea=0.97 andz=2.94, but they are obtained
extrapolation to the expected region of the VLDS theoryfrom expansions in 4d, which are not expected to pro-
(e=<1,z=<3), as discussed in Sec. lll. Consequently, thevide accurate results for smaill. On the other hand, the
present results for the DT model, although not confirming thenegative sign of the correction to one-loop results is consis-
universality of the amplitude ratios, are not enough to distent with our findings. Ind=2, our results are not able to
card that hypothesighe negative sign of the skewness is notexclude the one-loop values, confirming other authors’ con-
a problem, since its sign changes with—see the related clusions[10].
discussion in Ref[13)). The estimates of the steady-state skewness and kurtosis of

Now we turn to the CRSOS models in 2+1 dimensions.the CRSOS models withH,,,=1 andAH, =2 and of the

In Figs. 11a) and 11b), we show the steady-state skew- competitive mode(RD versus CRSOS withH,,,,=1) sug-
ness versus 14?2 for the CRSOS models withH,,,=1  gest that those amplitude ratios are universal in the VLDS
and AH,.,=2, respectively. The asymptotic estimates 8re class. However, for the DT model =1, which belongs to
=0.19+0.02 and5=0.20+0.02, which also suggest the uni- the same class, those quantities are very different from the
versality of this quantity. In Figs. 1&) and 11d), we show suggested universal values. One possible reason for this dis-
the steady-state kurtosis versud ¥# for the CRSOS mod- crepancy is the slow convergence of the DT data to the
els with AH,,=1 and AH,.=2, respectively. The VLDS behavior. The hypothesis of a slow crossover is sup-
asymptotic valueQ=0, which is the Gaussian value, is con- ported by the fact that the estimatesfor the DT model
sistent with the error bars. Thus, in 2+1 dimensions, we alsare significantly larger than the values predicted theoretically
obtain evidence of universality of the amplitude ratios forand confirmed numericalljp<1 in d=1). Another possibil-

VI. SUMMARY AND CONCLUSION
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ity is that both CRSOS models and the competitive modetions of new discrete models in this class would be relevant
have continuum representations with suitable combinationt broaden the present discussion.

of coefficients which lead to the same forms of the heights
distributions.

We believe that the results of this work will motivate
further studies, numerical and analytical, of the VLDS equa-
tion and related discrete models. The estimates of scaling
exponents id=1 and the apparent universality of amplitude ~ The author acknowledges the useful suggestions of Pro-
ratios are some of the results that may eventually help one ttgssor H. K. Janssen and Professor S. Das Sarma. This
validate approximations in analytical works. On the otherwork was partially supported by CNPq and FAPERdazil-
hand, numerical solutions of the VLDS equation or simula-ian agencies

ACKNOWLEDGMENTS

[1] A.-L. Barabasi and H. E. Stanleffractal Concepts in Surface (2002.
Growth (Cambridge University Press, New York, 1995 [19] S.-C. Park, J.-M. Park, and D. Kim, Phys. Rev6h, 036108
[2] J. Krug, Adv. Phys.46, 139 (1997). (2002.
[3] J. Villain, J. Phys. 11, 19 (199). [20] J. M. Kim and J. M. Kosterlitz, Phys. Rev. Let62, 2289
[4] Z.-W. Lai and S. Das Sarma, Phys. Rev. L&, 2348(1991). (1989.
[5] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. L&6, [21] J. M. Kim, J. M. Kosterlitz, and T. Ala-Nissila, J. Phys. 24,
889 (1986. 5569 (1991).
[6] E. Katzav, Phys. Rev. B5, 032103(2002. [22] F. D. A. Aardo Reis and D. F. Franceschini, Phys. RewbIE
[7] H. K. Janssen, Phys. Rev. Left8, 1082(1997. 3417 (2000.
[8] Y. Kim, D. K. Park, and J. M. Kim, J. Phys. A78, L533 [23] W. E. Hagston and H. Ketterl, Phys. Rev.3®, 2699(1999.
(1994). [24] P. Punyindu and S. Das Sarma, Phys. Rev5E R4863
[9] Y. Kim, and J.-M. Kim, Phys. Rev. 55, 3977(1997). (1998.
[10] S. H. Yook, J. M. Kim, and Y. Kim, Phys. Rev. 56, 4085 [25] D. E. Wolf and J. Kertész, Europhys. Le#t, 651 (1987.
(1997). [26] J. Kertész and D. E. Wolf, J. Phys. 21, 747 (1988.
[11] C.-S. Chin and M. den Nijs, Phys. Rev. 19, 2633(1999. [27] B. S. Costa, J. A. R. Euzébio, and F. D. A. Aardo Reis, Physica
[12] E. Marinari, A. Pagnani, and G. Parisi, J. Phys.38, 8181 A 328 193(2003.
(2000. [28] C. M. Horowitz and E. Albano, J. Phys. 84, 357 (200J).
[13] F. D. A. Aaréo Reis, Phys. Rev. B9, 021610(2004. [29] C. M. Horowitz, R. A. Monetti, and E. V. Albano, Phys. Rev.
[14] S. Das Sarma and P. Tamborenea, Phys. Rev. 66it.325 E 63, 066132(200D.
(1991). [30] F. D. A. Aardo Reis, Physica 816, 250(2002.
[15] S. Das Sarma, P. P. Chatraphorn, and Z. Toroczkai, Phys. Re{81] F. Family and T. Vicsek, J. Phys. A8, L75 (1985.
E 65, 036144(2002. [32] C. Dasgupta, J. M. Kim, M. Dutta, and S. Das Sarma, Phys.
[16] A. Chame and F. D. A. Aaréo Reis, Surf. SBb3 145(2004). Rev. E 55, 2235(1997).
[17] Z.-F. Huang and B.-L. Gu, Phys. Rev. &7, 4480(1998. [33] C. Dasgupta, S. Das Sarma, and J. M. Kim, Phys. ReB4E
[18] S.-C. Park, D. Kim, and J.-M. Park, Phys. Rev6h, 015102 R4552(1996.

031607-8



