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We study numerically some discrete growth models belonging to the class of the nonlinear molecular beam
epitaxy equation, or the Villain–Lai–Das Sarma(VLDS) equation. The conserved restricted solid-on-solid
model(CRSOS) with maximum height differencesDHmax=1 andDHmax=2 was analyzed in substrate dimen-
sionsd=1 andd=2. The Das Sarma and Tamborenea(DT) model and a competitive model involving random
deposition and CRSOS deposition were studied ind=1. For the CRSOS model withDHmax=1, we obtain the
more accurate estimates of scaling exponents ind=1: roughness exponenta=0.94±0.02 and dynamical ex-
ponentz=2.88±0.04. These estimates are significantly below the values of one-loop renormalization for the
VLDS theory, which confirms Janssen’s proposal of the existence of higher-order corrections. The roughness
exponent ind=2 is very near the one-loop resulta= 2

3, in agreement with previous works. The momentsWn of
ordersn=2, 3, 4 of the height distribution were calculated for all models, and the skewnessS;W3/W2

3/2 and
the kurtosisQ;W4/W2

2−3 were estimated. At the steady states, the CRSOS models and the competitive model
have nearly the same values ofSandQ in d=1, which suggests that these amplitude ratios are universal in the
VLDS class. The estimates for the DT model are different, possibly due to their typically long crossover to
asymptotic values. Results for the CRSOS models ind=2 also suggest that those quantities are universal.
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I. INTRODUCTION

Surface and interface growth processes are subjects of
great interest from the perspective of applications to thin
films and multilayer growth, and, from the theoretical point
of view, for their important role in nonequilibrium statistical
mechanics[1,2]. Frequently, those processes are described
by discrete models which represent the basic growth mecha-
nisms by simple stochastic rules, such as aggregation and
diffusion, and neglect details of the microscopic interactions.
On the other hand, continuous theories are successful at rep-
resenting those processes in the hydrodynamic limit. They
predict the scaling exponents of many discrete models,
which are consequently grouped in a small number of uni-
versality classes.

Growth by molecular beam epitaxy(MBE), which is one
of the most important techniques to produce high-quality
films with smooth surfaces, motivated the proposal of many
discrete and continuous models. The dynamics during MBE
deposition is dominated by diffusion processes, which led to
the proposal of the Villain–Lai–Das Sarma(VLDS) growth
equation[3,4]

]h

]t
= n4¹

4h + l4¹
2s¹hd2 + hsxW,td, s1d

where hsxW ,td is the height at positionxW and time t in a
d-dimensional substrate,n4 andl4 are constants, andh is a
Gaussian(nonconservative) noise. Equation(1) is also fre-
quently called a nonlinear molecular beam epitaxy equation
or a conserved Kardar-Parisi-Zhang equation[1,5].

The most important geometrical quantity to characterize
the surface of the deposit grown by such processes is the
interface width. It is defined as the root-mean-square fluctua-
tion of the average height,

j ; fksh − h̄d2lg1/2. s2d

For short times, it scales as

j , tb, s3d

whereb is called the growth exponent. For long times, in the
steady state, the interface width saturates at

jsat, La, s4d

where a is called the roughness exponent. The crossover
time from the growth regime to the steady state scales withL
with the dynamical exponent

z= a/b. s5d

For the VLDS theory, a one-loop dynamical
renormalization-group(DRG) calculation[3,4] led to a=s4
−dd /3, z=s8+dd /3, andb=s4−dd / s8+dd below the upper
critical dimensiondc=4. See also the recent work of Katzav
[6], based on a self-consistent expansion approach, which
also obtains these estimates. Some authors assumed the one-
loop values to be exact in all orders, but Janssen[7] recently
claimed that this conclusion was derived from an ill-defined
transformation and, consequently, there would be higher-
order corrections. From a two-loop calculation, he obtained
small negative corrections toa andz in all dimensions[7].
Numerical studies of some discrete models which belong to
the VLDS class in the continuum limit(large lattices, long
times) were not able to solve this controversy. Ind=1, nu-
merical work on a conserved restricted solid-on-solid model
(to be defined below) systematically suggestsa,1 [8,9], but
the error bars are large and, consequently, the authors still
suggest the validity of the one-loop result. Ind=2 and higher
dimensions[10], numerical results indicated that possible
corrections to the one-loop result were smaller than the two-
loop estimates of Janssen[7].
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Another important question is motivated by recent results
on discrete models belonging to the Kardar-Parisi-Zhang
(KPZ) class in d=2. The KPZ growth equation includes
second-order linear and nonlinear terms which are more rel-
evant than those in the VLDS equation[Eq. (1)] in the hy-
drodynamic limit [5,1]. Works on discrete KPZ models
showed that the steady-state values of the moments of the
height distribution,

Wn ; ksh − h̄dnl, s6d

obey power-counting, i.e., they scale as

Wn , Lna s7d

(note thatW2=j2). Moreover, estimates of the skewness

S;
W3

W2
3/2 s8d

and of the kurtosis

Q ;
W4

W2
2 − 3 s9d

of the KPZ models indicated that the amplitude ratios of the
momentsWn (such asS and Q) are universal[11–13]. It
seems that no previous work has considered these questions
in models belonging to the VLDS class, possibly due to the
large times involved in their simulations(the dynamical ex-
ponent is nearly double that of the KPZ class). Besides the
theoretical relevance of those questions, additional motiva-
tion for their analysis is the fact that the amplitude ratios can
be measured with much higher accuracy than the scaling
exponents and may eventually help one to infer the univer-
sality class of an experimental growth process.

There are a small number of discrete models belonging to
the VLDS class in the continuum limit. The discrete model
proposed by Das Sarma and Tamborenea(DT model) [14] is
an example of a MBE-motivated model which falls in that
class ind=1, although there is evidence that its class ind
=2 is different[15,16]. On the other hand, the so-called con-
served restricted-solid-on-solid(CRSOS) models, first pro-
posed by Kimet al. [8], is expected to belong to the VLDS
class in all dimensions. This was already proved analytically
in d=1 [17–19]. In the CRSOS models, the difference in the
heights of neighboring columns is always smaller than a cer-
tain valueDHmax, similar to the RSOS model of Kim and
Kosterlitz [20,21]. However, in the Kim-Kosterlitz model, if
the aggregation at the column of incidence does not satisfy
that condition, then the aggregation attempt is rejected(con-
sequently, the model is in the KPZ class). On the other hand,
in the CRSOS model, the incident particle migrates to the
nearest column at which the height difference constraint is
satisfied after aggregation. Thus, all deposition attempts are
successful in the CRSOS model.

Here, we will study numerically a modified version of the
CRSOS model ind=1 andd=2, with two different values of
DHmax, the DT model in d=1, simulated with noise-
reduction methods, and a competitive model involving CR-
SOS and random deposition ind=1. All these models belong
to the VLDS class. We will perform systematic extrapola-

tions of effective(roughness and dynamical) exponents for
the CRSOS model ind=1 andd=2. The asymptotic expo-
nents ind=1 are clearly different from the one-loop DRG
values and the sign of the deviations are in qualitative agree-
ment with Janssen’s results[7]. In d=2, possible corrections
in the exponenta are smaller than the two-loop corrections
calculated in that work, confirming other authors’ conclu-
sions. It will also be shown that the moments of the heights
distribution obey power-counting[Eq. (7)] in d=1 andd=2,
similarly to KPZ, and that the skewness and the kurtosis for
different versions of the CRSOS model(different DHmax)
and for the competitive model have nearly the same values.
These estimates differ from those of the DT model ind=1,
but universality of amplitude ratios in the VLDS class cannot
be discarded due to the typical long crossovers of the DT
model.

The rest of this paper is organized as follows. In Sec. II,
we present the stochastic rules of the CRSOS and DT models
and give information on the simulation procedure. In Sec.
III, we calculate the scaling exponents of the VLDS class in
one-dimensional substrates. In Sec. IV, we calculate the scal-
ing exponents in two-dimensional substrates. In Sec. V, we
compare the asymptotic amplitude ratios of all models ind
=1 and d=2. In Sec. VI, we summarize our results and
present our conclusions.

II. MODELS AND SIMULATION PROCEDURE

The rules for choosing the aggregation point in our ver-
sion of the CRSOS model are slightly different from the
original ones. The present version was introduced in Ref.
[22] as a model for amorphous carbon-nitrogen film growth,
but only small lattices were analyzed there and, conse-
quently, reliable estimates of scaling exponents were not ob-
tained.

At any time, all pairs of neighboring columns are re-
stricted to obey the conditionDhøDHmax, whereDh is the
difference in the columns’ heights andDHmax is fixed. The
deposition attempt begins with the random choice of one
substrate columni. If the above condition is satisfied after
aggregation of a new particle at the top of columni, then the
aggregation takes place at that position. Otherwise, a nearest-
neighbor column is randomly chosen(independently of its
height) and the same test is performed. This process is con-
tinued until a column is chosen in which the new particle can
be permanently deposited. Here, the casesDHmax=1 and
DHmax=2 will be analyzed.

In the original version of the CRSOS model[8], the ag-
gregation takes place at the nearest column in which the
condition on height differences is satisfied, but in our version
the incident particle performs a random walk along the sub-
strate direction(s) while it searches for the aggregation point.
The original model was proved to belong to the VLDS class
in d=1 by different methods[17–19] and the coefficients of
the VLDS equation were explicitly calculated forDHmax=1
[18,19]. Since our version does not change any symmetry of
the original CRSOS model, it is also expected to be in that
class. Notice, for instance, that there is no upward or down-
ward current in our model due to the mechanism of random
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walks for choosing the aggregation position(the random
steps do not depend on the relative heights of the columns).
It implies that the coefficient of the second-order height de-
rivative of the growth equation[not shown in Eq.(1)] is
exactly zero, the VLDS equation being the most plausible
continuum description—see, e.g., the discussion in Ref.[23].

We will also study the DT model ind=1. In this model,
the incident particle sticks at the top of the randomly chosen
columni if it has one or two lateral neighbors at that position
(a kink site or a valley, respectively). Otherwise, the neigh-
boring columns(at the right and the left sides ind=1) are
consulted. If the top position of only one of these columns is
a kink site or a valley, then the incident particle aggregates at
that point. If no neighboring column satisfies that condition,
then the particle sticks at the top of columni. Finally, if both
neighboring columns satisfy that condition, then one of them
is randomly chosen.

In our simulations of the DT model, we used the noise
reduction technique adopted in Ref.[24]. The noise reduc-
tion factorm is the number of attempts at a site for an actual
aggregation process to occur[25,26]. Here, the valuem
=10 will be considered because it provided accurate esti-
mates of scaling exponents in Ref.[24] from simulations in
relatively small systems. On the other hand, the data for the
original DT model present huge finite-size corrections(see,
e.g., Ref.[27]).

In order to improve our discussion on the universality of
amplitude ratios(Sec. V), we also simulated a competitive
model in which the aggregation of the incident particle may
follow two different rules: with probabilityp, the particle
aggregates at the top of the column of incidence, such as in
the random deposition(RD) model [1]; otherwise(probabil-
ity 1−p) it diffuses until finding a columni in which the
conditionhi −hj øDHmax is satisfied for all nearest neighbors
j after aggregation. Thus, the latter aggregation mechanism
works for preserving the column heights’ constraint of the
CRSOS model. Extending previous conclusions on other
competitive models[28,29], it is expected that this model is
described asymptotically by the VLDS equation, similarly to
the pure CRSOS model, but the coefficientsn4 andl4 of the
corresponding continuous equation[Eq. (1)] are expected to
depend onp. In this paper, we will simulate the model with
p=0.25 (p=0 is the pure CRSOS model).

The above models were simulated ind=1 in lattices of
lengths ranging fromL=16 to L=1024 for the CRSOS
model with DHmax=1 and DHmax=2, from L=16 to L
=256 for the DT model, and fromL=16 to L=512 for the
competitive model. For the CRSOS models, the number of
realizations up to the steady state was typically 104 for the
smallest lattices and nearly 500 for the largest lattices. The
same applies to the DT model, but notice that the largest
length in that case was justL=256. In d=2, the CRSOS
model with DHmax=1 was simulated in lattices of lengths
ranging fromL=16 to L=256, and withDHmax=2 only un-
til L=128. Whenever the number of realizations up to the
steady state was smaller than 104, a larger number of real-
izations covering the growth and the crossover regions was
generated. This allowed the calculation of crossover times
(see below) with good accuracy ind=1.

The calculation of the moments of the height distribution
at the steady states,Wn [Eq. (6)], followed along the same

lines described in Ref.[13]. In order to estimate dynamical
exponents, we used a recently proposed method to calculate
a characteristic timet0 which is proportional to the time of
relaxation to the steady state[30]. For fixedL, after calcu-
lating the saturation widthjsatsLd, t0 is defined through

jsL,t0d = kjsatsLd, s10d

with a constantk&1. From the Family-Vicsek relation[31],
it is expected that[30]

t0 , Lz. s11d

Here, we estimatedt0 with k ranging fromk=0.4 to k
=0.7. Since the exponentz is large, the characteristic times
t0 increase very fast withL. Consequently, for largek, the
accuracy oft0 is low in large lattices. On the other hand, for
small k, the timest0 in small lattices are also very small
(neart0=1) and, consequently, there are effects of the initial
flat substrate. This is the reason why we chose a restricted
range ofk to analyze our data.

III. SCALING EXPONENTS IN ONE-DIMENSIONAL
SUBSTRATES

In order to estimate the roughness exponent from the in-
terface widthj, the first step is to calculate the effective
exponents

asL,id ;
lnfjsatsLd/jsatsL/idg

ln i
s12d

for fixed i. It is expected thatasL,id→a for any choice ofi.
In Figs. 1(a) and 1(b), we showasL,2d and asL,4d versus

1/L, respectively, for the CRSOS model withDHmax=1. The
evolution of the data suggests thatasL,id converges to 0.91
øaø0.94, accounting for the error bars and reasonable
finite-size corrections.

The type of plot in Figs. 1(a) and 1(b) is suitable to fit the
data to the scaling form

asL,id < a + AL−D, s13d

with A constant, if the correct variableL−D is used
in the abscissa[D=1 was tested in Figs. 1(a) and 1(b)].
In its turn, Eq.(13) is a consequence of a scaling relation

FIG. 1. Effective roughness exponents(a) asL,2d and (b) asL,4d
versus inverse lattice length for thes1+1d-dimensional CRSOS
model with DHmax=1. Error bars are shown only when they are
larger than the size of the data points.
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jsat<Lasa0+a1L
−Dd, with a0 and a1 constants, which in-

cludes a subdominant term in addition to the dominant one in
Eq. (4). However, no variable of the formL−D provided a
reasonable linear fit in the range of lattice size analyzed
there. Thus,D=1 was used in Figs. 1(a) and 1(b) just to
illustrate theL dependence of the effective exponents. On the
other hand, estimating the asymptotica is possible because
there is no evidence of an upward curvature of those plots for
largeL.

The data for the CRSOS model withDHmax=2 were ana-
lyzed along the same lines. In Figs. 2(a) and 2(b), we show
asL,2d and asL,4d versus 1/L1/2, respectively. The variable in
the abscissa of Figs. 2(a) and 2(b) was chosen to provide a
good linear fit of theasL,4d data—see the dotted line in Fig.
2(b). These results suggest stronger finite-size corrections for
asL,id when compared to the model withDHmax=1. The cor-
responding asymptotic estimates are in the range 0.92øa
ø0.97, also accounting for the error bars. However, since
these error bars are larger than those forDHmax=1, it is pos-
sible that the true asymptotic regime was not attained yet and
that the true leading corrections are different. Anyway, those
results still suggest thata,1 in theL→` limit.

Alternatively, we will analyze our data assuming the pres-
ence of a constant term as the subleading correction to the
scaling ofjsat

2 ,

jsat
2 = jI

2 + AL2a s14d

[since a,1, it corresponds asymptotically toD,2 in Eq.
(13)]. jI is called intrinsic width and is frequently associated
to large local slopes in discrete KPZ models[25,26,13]. Ef-
fective exponentsaL

sId which cancel the contribution ofjI
2

may be defined as

aL
sId ;

1

2

lnfjsat
2 s2Ld − jsat

2 sLdg/fjsat
2 sLd − jsat

2 sL/2dg
ln 2

. s15d

In Figs. 3(a) and 3(b), we showaL
sId versus 1/L for the

CRSOS model withDHmax=1 and DHmax=2, respectively.
Here, the variable 1/L in the abscissa was also not chosen to
perform data extrapolation. The effective exponents vary
within narrow ranges(0.89–0.94 forDHmax=1, 0.90–0.96 for
DHmax=2), even including their error bars. Consequently,
any variable in the formL−D s0.5øDø2d in the abscissa

would lead to nearly the same extrapolated value ofa. The
data for DHmax=1 are more accurate and suggest 0.90øa
ø0.95, which is consistent with the previous analysis. The
results forDHmax=2 confirm the trend toa,1, although the
uncertainties are larger.

Assuming the power-counting property[Eq. (7)] of the
moments of the width distribution(to be discussed in detail
in Sec. V), we may also use higher moments to estimatea.
The effective exponents obtained fromW3 have large fluc-
tuations, but those obtained fromW4 behave similarly to the
ones obtained from the interface width. They are defined as

asL,id
s4d ;

lnfW4,satsLd/W4,satsL/idg
ln i

, s16d

where W4,satsLd are the fourth moments calculated at the
steady states.

In Figs. 4(a) and 4(b), we showasL,2d
s4d versus 1/L1/2 for the

CRSOS models withDHmax=1 andDHmax=2, respectively.
The variable in the abscissa of Figs. 4(a) and 4(b) was also
chosen to illustrate the behavior of the data for largeL and
not to fit the data to a certain scaling form. The downward
curvature of the plots for largeL also suggestsa,1. The
maximum and minimum reasonable limits that can be in-
ferred from the evolution of the data forDHmax=1 give
0.92øaø0.96. The accuracy of the estimate forDHmax=2
is lower, as before.

The intersection of at least two of the above estimates for
DHmax=1, obtained from the scaling of different quantities

FIG. 2. Effective roughness exponents(a) asL,2d and (b) asL,4d
versus 1/L1/2 for the s1+1d-dimensional CRSOS model with
DHmax=2. Error bars are shown only when they are larger than the
size of the data points.

FIG. 3. Effective roughness exponentsaL
sId (accounting for the

intrinsic width) versus 1/L for s1+1d-dimensional CRSOS models
with (a) DHmax=1 and(b) DHmax=2.

FIG. 4. Effective roughness exponentsasL,2d
s4d (obtained from the

fourth momentW4) versus 1/L1/2 for s1+1d-dimensional CRSOS
models with(a) DHmax=1 and(b) DHmax=2. Error bars are shown
only when they are larger than the size of the data points.
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and assuming different forms of finite-size corrections, pro-
vides a final estimatea=0.94±0.02. As will be discussed
below, results for the DT model do not improve those ob-
tained with the CRSOS model.

In Figs. 5(a) and 5(b), we show the effective exponents
asL,2d and asL,2d

s4d for the noise-reduced DT model, also as a

function of 1/L1/2. They are larger thana=1 and systemati-
cally increase withL. However, from all previous theoretical
work and the above numerical data for the CRSOS models,
there is no reason to expecta.1 in the VLDS class. Con-
sequently, extrapolation of those data will not give reliable
information for the discussion on the exponents of the VLDS
theory in 1+1 dimensions. Instead, it is expected that the
effective exponents for the noise-reduced DT model[Figs.
5(a) and 5(b)] will eventually begin to decrease withL, pos-
sibly for much largerL. Such a decrease ofasL,2d is actually
observed in the original DT model(without noise reduction),
in the same range of lattice lengths analyzed here[27]. Also
recall that, as shown in Ref.[27], the data for the original DT
model also present huge finite-size effects and cannot be
used to obtain reliable estimates of VLDS exponents.

No improvement of the results in Figs. 5(a) and 5(b) is
obtained by considering the contribution of the intrinsic
width [Eqs.(14) and (15)].

There are two other points concerning our results for the
DT model that deserve some comments. The first one is the
comparison with the results of Punyindu and Das Sarma in
Ref. [24], who obtaineda<1 with noise reduction in lattice
lengthsL&60. Our effective exponents for the smallest lat-
tices s16øLø64d correspond to two data points at the left
sides(larger 1/L) of Figs. 5(a) and 5(b) and those exponents
are also neara=1. Consequently, our estimates are consis-
tent with those of Ref.[24]. On the other hand, we conclude
that the noise-reduction scheme works properly only in a
special range of lattice lengths, since its application to larger
lattices [L=128 andL=256 in Figs. 5(a) and 5(b)] led to
effective exponents larger than 1, indicating much more
complicated finite-size behavior.

The other important point is related to the large error bars,
particularly for L=256. One of the reasons is certainly the
relatively small number of realizations for the largest lengths
(see Sec. II). However, the surfaces generated by the DT
model in d=1 present grooves which may survive during

long times. These structures largely increase the interface
width of some realizations(see Ref.[32]) and, consequently,
have a remarkable influence on the fluctuations of that quan-
tity when averaged over various realizations. However, note
that this instability is controlled in the DT model, i.e., the
depths of the grooves do not diverge as time increases, con-
trary to other discretized growth models which show true
instabilities when pillars or grooves are formed[32,33].

Now we turn to the calculation of the dynamical expo-
nent.

Effective dynamical exponents are defined as

zsL,id =
lnft0sLd/t0sL/idg

ln i
, s17d

so thatzL→z as t→`. The error bars oft0 are larger than
those ofj and the uncertainties are enlarged in the calcula-
tion of effective exponents for small values ofi [Eq. (17)],
therefore we will work only withi =4.

In Fig. 6, we showzsL,4d versus 1/L for the CRSOS model
with DHmax=1, with t0 calculated using four different values
of k in Eq. (10) s0.4økø0.7d. The data for differentk
clearly converge to the same region, providing an asymptotic
estimatez=2.88±0.04. This final estimate also accounts for
the error bars(not shown in Fig. 6), which are nearDz
=0.02 for the largest values ofL. Again it is clear that the
valuez=3 of one-loop renormalization is excluded.

This conclusion is corroborated by the results for the CR-
SOS model withDHmax=2, although the accuracy of the data
was poorer. In Fig. 7, we showzsL,4d versus 1/L for that
model, witht0 also calculated using four different values of
k in Eq. (10).

Our results for the noise-reduced DT model do not pro-
vide useful information on dynamical exponents, similar to
the case of the roughness exponents.

IV. SCALING EXPONENTS IN TWO-DIMENSIONAL
SUBSTRATES

In Figs. 8(a) and 8(b), we show asL,2d [Eq. (12)] and

asL,2d
s4d [Eq. (16)] for the two-dimensional CRSOS model

FIG. 5. Effective roughness exponents(a) asL,2d (obtained from
the interface width) and(b) asL,2d

s4d (obtained fromW4) versus 1/L1/2

for the s1+1d-dimensional DT model. Error bars are shown only
when they are larger than the size of the data points.

FIG. 6. Effective dynamical exponentszsL,4d versus 1/L for the
s1+1d-dimensional CRSOS model withDHmax=1: k=0.4 (tri-
angles), k=0.5(squares), k=0.6(crosses), k=0.7(stars). Small hori-
zontal shifts of the data points were used to avoid their superposi-
tion. Error bars(not shown) are smaller thanDz=0.02(of this order
for the largestL).
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with DHmax=1. Both linear fits givea=0.662, which is very
near the one-loop renormalization valuea= 2

3 of the VLDS
theory. Accounting for the error bars, which are particularly
large for L=256, we are not able to determine whethera
= 2

3 is exact or not. On the other hand, confirming other au-
thors’ results[10], any difference from that value is probably
smaller than the two-loop correction of Janssen[7], which is
Da<0.014.

Similar to the one-dimensional case, the error bars of the
data for the model withDHmax=2 are larger. Consequently,
no discrepancy from the one-loop exponents could be de-
tected too.

The characteristic timest0 for the model withDHmax=1
were obtained in lattices with 16øLø128, but their values
for the smallest lattices(L=16 andL=32) are very small,
sometimes belowt0=1 (one monolayer). For L=256, the
accuracy of the interface widths data is not enough to pro-
vide reliable estimates oft0. Consequently, we were not able
to calculate accurate dynamical exponents in the two-
dimensional case.

V. UNIVERSALITY OF AMPLITUDE RATIOS

Evidence on the power-counting property of the moments
Wn of the heights distribution of VLDS models was given
in Sec. III by the estimates ofa obtained fromW2 and

W4. Clearer evidence is given here by the finite asymptotic
estimates of the skewness and the kurtosis at the steady
states.

First we consider the models in 1+1 dimensions.
In Figs. 9(a) and 9(b), we show the steady-state skewness

versus 1/L1/2 for the CRSOS models withDHmax=1 and
DHmax=2, respectively. Except for the data forL=1024,
which have relatively large error bars, all points fall in al-
most perfect straight lines, which give the asymptotic value
S=0.32±0.02 for both models.

In Figs. 9(c) and 9(d), we show the steady-state kurtosis
versus 1/L1/2 for the CRSOS models withDHmax=1 and
DHmax=2, respectively. Only the data forLø512 were
shown because the error bars are much larger forL=1024,
not giving additional information on the evolution ofQ. Rea-
sonable linear fits are obtained with the last four data points
in each case. The asymptotic estimate isQ=−0.11±0.02 for
both models.

Our results for the competitive model(RD and CRSOS)
introduced in Sec. II also suggest that those amplitude ratios
are universal for VLDS models. In that case, there is no
constraint on the difference of the heights of neighboring
columns, but only a trend to suppress large height differ-
ences. The coefficientsn4 and l4 in the corresponding con-
tinuous equation[Eq. (1)] are probably different from those
in the pure modelsp=0d, as obtained in related competitive
models[28,29]. In Figs. 10(a) and 10(b), we show, respec-
tively, SsL ,t→`d andQsL ,t→`d as a function of 1/L1/2 for
the competitive model. The asymptotic estimates areS
=0.32±0.02 andQ<−0.1, which are near the previous esti-
mates for the pure CRSOS model.

In Figs. 10(c) and 10(d), we show, respectively,
SsL ,t→`d and QsL ,t→`d as a function of 1/L1/2 for the
noise-reduced DT model ind=1. There are several reasons
for the large error bars of the kurtosis, particularly in the

FIG. 7. Effective dynamical exponentszsL,4d versus 1/L for
the s1+1d-dimensional CRSOS model withDHmax=2. Error bars
(not shown) are smaller thanDz=0.03 (of this order for the largest
L). Symbols correspond to the same values ofk in Fig. 6.

FIG. 8. Effective roughness exponents(a) asL,2d (obtained from
the interface width) and (b) asL,2d

s4d (obtained fromW4) versus 1/L

for the s2+1d-dimensional CRSOS model withDHmax=1. Error
bars are shown only when they are larger than the size of the data
points.

FIG. 9. Steady-state skewness for thes1+1d-dimensional CR-
SOS model with(a) DHmax=1 and(b) DHmax=2, and steady-state
kurtosis for that model with(c) DHmax=1 and (d) DHmax=2, as
functions of 1/L1/2. Dotted lines are least-squares fits of the data.
Error bars are shown only when they are larger than the size of the
data points.
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largest lattices. First, as justified in Sec. III, fluctuations
in the data for the DT model are typically large. Secondly,
the relative fluctuations of the momentsWn [Eq. (6)]
rapidly increase with the ordern. Finally, while the size of
the error bar of the kurtosis is the same as that ofW4/W2

2, the
relative error significantly increases when the constant 3 is
subtracted[Eq. (9)]. The relatively large errors in Figs. 9(c)
and 9(d) (CRSOS models) can also be explained along these
lines.

The trends of the data for the DT model in Figs. 10(c) and
10(d) are completely different from those of the CRSOS
models. We cannot exclude the possibility that the universal-
ity of the amplitude ratios might be a special feature of CR-
SOS models and some simple extensions, such as the above
competitive model. However, the behavior of the scaling ex-
ponents of the DT model is also unusual, with no possible
extrapolation to the expected region of the VLDS theory
saø1,zø3d, as discussed in Sec. III. Consequently, the
present results for the DT model, although not confirming the
universality of the amplitude ratios, are not enough to dis-
card that hypothesis(the negative sign of the skewness is not
a problem, since its sign changes withl4—see the related
discussion in Ref.[13]).

Now we turn to the CRSOS models in 2+1 dimensions.
In Figs. 11(a) and 11(b), we show the steady-state skew-

ness versus 1/L1/2 for the CRSOS models withDHmax=1
and DHmax=2, respectively. The asymptotic estimates areS
=0.19±0.02 andS=0.20±0.02, which also suggest the uni-
versality of this quantity. In Figs. 11(c) and 11(d), we show
the steady-state kurtosis versus 1/L1/2 for the CRSOS mod-
els with DHmax=1 and DHmax=2, respectively. The
asymptotic valueQ=0, which is the Gaussian value, is con-
sistent with the error bars. Thus, in 2+1 dimensions, we also
obtain evidence of universality of the amplitude ratios for

CRSOS models, which suggests this possibility for the whole
VLDS class.

VI. SUMMARY AND CONCLUSION

We studied numerically discrete growth models which be-
long to the VLDS class in 1+1 and 2+1 dimensions. Scaling
exponents and steady-state values of the skewness and the
kurtosis, which characterize the height distribution, were de-
termined for those models.

Results for the CRSOS model withDHmax=1 gave
the roughness exponenta=0.94±0.02 and the dynamical
exponentz=2.88±0.04 ind=1. These estimates confirm the
proposal of Janssen[7] that the exponents of the VLDS
theory obtained from one-loop renormalization(a=1 and
z=3) are not exact. The corrections from two-loop cal-
culations givea<0.97 andz=2.94, but they are obtained
from expansions in 4−d, which are not expected to pro-
vide accurate results for smalld. On the other hand, the
negative sign of the correction to one-loop results is consis-
tent with our findings. Ind=2, our results are not able to
exclude the one-loop values, confirming other authors’ con-
clusions[10].

The estimates of the steady-state skewness and kurtosis of
the CRSOS models withDHmax=1 andDHmax=2 and of the
competitive model(RD versus CRSOS withDHmax=1) sug-
gest that those amplitude ratios are universal in the VLDS
class. However, for the DT model ind=1, which belongs to
the same class, those quantities are very different from the
suggested universal values. One possible reason for this dis-
crepancy is the slow convergence of the DT data to the
VLDS behavior. The hypothesis of a slow crossover is sup-
ported by the fact that the estimates ofa for the DT model
are significantly larger than the values predicted theoretically
and confirmed numerically(aø1 in d=1). Another possibil-

FIG. 10. (a),(b) Steady-state skewness and kurtosis, respec-
tively, as a function of 1/L1/2, for the competitive model(CRSOS
with DHmax=1 and RD); (c),(d) steady-state skewness and kurtosis,
respectively, as a function of 1/L1/2, for the DT model. Dotted lines
are least-squares fits of the data. Error bars are shown only when
they are larger than the size of the data points.

FIG. 11. Steady-state skewness for thes2+1d-dimensional CR-
SOS model with(a) DHmax=1 and(b) DHmax=2, and steady-state
kurtosis for that model with(c) DHmax=1 and (d) DHmax=2, as
functions of 1/L1/2. Dotted lines are least-squares fits of the data.
Error bars are shown only when they are larger than the size of the
data points.
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ity is that both CRSOS models and the competitive model
have continuum representations with suitable combinations
of coefficients which lead to the same forms of the heights
distributions.

We believe that the results of this work will motivate
further studies, numerical and analytical, of the VLDS equa-
tion and related discrete models. The estimates of scaling
exponents ind=1 and the apparent universality of amplitude
ratios are some of the results that may eventually help one to
validate approximations in analytical works. On the other
hand, numerical solutions of the VLDS equation or simula-

tions of new discrete models in this class would be relevant
to broaden the present discussion.
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